Experience with Transradial and Transulnar Abdominal Angiography and Intervention.

e-Poster: 412

Congress: SIR 2007

Type: Original Scientific Research Poster Topic: ONOCOLOGY: / Embolization

Authors: T. Sato; Hiroshima/JP

Any information contained in this pdf file is automatically generated from digital material submitted to e-Poster by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply SIR's endorsement, sponsorship or recommendation of the third party, information, product, or service. SIR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold SIR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations. http://www.sirweb.org

1. Purpose

In coronary angiography and angioplasty, transradial approach ([a, la] @a, val we last a laternative catheterization method to transfemoral (TFA) or transbrachial approach (TBA). We started abdominal angiography and intervention transradially in 1999. We have reported its clinical experience at SIR. And we have also started transulnar approach (TUA) in patients with weak radial pulsation in 2002. The purpose of this study is to report practical and clinical applicability of these methods in abdominal angiography and intervention.

2. Material and methods

Between February 1999 and August 2006, 382 abdominal examinations were tried transradially or transulnarly in 225 cases. 151 cases were liver or gall bladder tumor, 48 cases were other abdominal tumor, 26cases were gastrointestinal bleeding or aneurysm, 3 cases were renal or superior mesenteric arterial thrombosis and 1 case was ulcerative colitis. 310 examinations were with transarterial embolization. ([a, 1a] @a, pa] wol.jpg] Table1, [a, 1a] @a, pa] wol.jpg] Table2)

Methods:

- 1. Before procedure, Allen's test was done to assess radial or ulnar arterial circulation of the hand. In some cases of weak radial pulsation, ulnar puncture was done. If both arterial pulsation was extremely weak, ipsilateral brachial puncture or contralateral radial puncture was chosen.
- 2. 1 tablet of Diclofenac Sodium25mg or 1 tablet of Diazepam 5mg was taken per orally almost one hour before examination.
- 3. Under local anesthesia, left radial or ulnar artery was punctured with 20G 4cm plastic needle and a 4F 23cm long introducer was inserted.
- 4. Intravenous injection of 2,000-3,000 units of heparin was done.
- 5. A 4F 120cm long [ã, ¹ãl @ã, ¤ãl ‰3.jpg] TOMO1 or JL4 catheter was proceeded to descending aorta and selective catheterization was done. TOMO1 catheter is designed for inserting left gastric artery or inferiorphrenic artery (Fig.2). Superselective catheterization was done with guidewire directing method or with 2.4F 150cm long microcatheter.
- 6. After examinations, puncture site was compressed by [ã, ¹ãl ©ã, ¤ãl %c4.jpg] compression instrument (Radispo, Xemex) for 6 hours (Fig.3). We did not compress manually. Patients were free from bed rest just after the examination.

3. Results

1.Puncture:

2. Catheterization & intervention:

In early days, catheter buckling to ascending aorta was sometimes seen. In 2 cases, pigtail catheter was needed to proceed guidewire to descending aorta. After we started to use TOMO1 or JL4 catheter, no catheter exchange was needed to proceed catheters to descending aorta. Selective catheterization was successful in all patients as we did transfemorally. In HCC patients, superselective catheterization to subsegmental branches and transarterial chemoembolization were done. Catheters were easily inserted to replaced right hepatic artery, right inferior phrenic artery and left gastric artery using TOMO1 catheter except some difficult cases.

In 2 cases of superiormesenteric arterial branch aneurysm, one case of hepatic arterial aneurysm and one case of splenic arterial pseudoaneurysm, successful coil embolization was done. In one case of renal angiomyolipoma, embolization with absolute ethanol using balloon occlusion method was done successfully.

Femoral approach was needed for superselective catheterization another day in 2 cases. In one case of omental arterial aneurysm, femoral approach was needed for complete embolization another day because microcatheter was not long enough to

reach one of the feeding arteries. (Case1)

3. Complication:

No puncture site hematoma was seen after examinations. Subcutaneous hemorrhage was sometimes seen in patients with severe liver cirrhosis after removal of tourniquet. Though no radial arterial stenosis was noted just after the procedure, weak radial pulsation was found in 5 cases at next examination(1.3%). And 3 cases were examined transulnarly and 2 case was examined transbrachially at next examination. No radial arterial obstruction or thrombosis was noted. No cerebrovascular trouble was noted.

4. Clinical cases (Difficult cases):

Case1: $[\underline{\tilde{a}}, \underline{\tilde{a}}\underline{\tilde{c}} \otimes \underline{\tilde{a}}, \underline{\tilde{a}}\underline{\tilde{a}}\underline{\tilde{c}} \otimes \underline{\tilde{a}}, \underline{\tilde{a}}\underline{\tilde{c}} \otimes \underline{\tilde{a}}, \underline$

Case2: $[\tilde{a}, \tilde{a} \neq 0, \tilde{a}, \tilde{a} \neq 0, \tilde{a}$

Fig4

4. Conclusion

Discussion:

After we started TRA, 55 to 88 % of procedures were done with TRA in each year. Most of the patients examined with TFA or TBA were hemodialysis patients as nephrologists asked us not to examine transradially (Table 1).

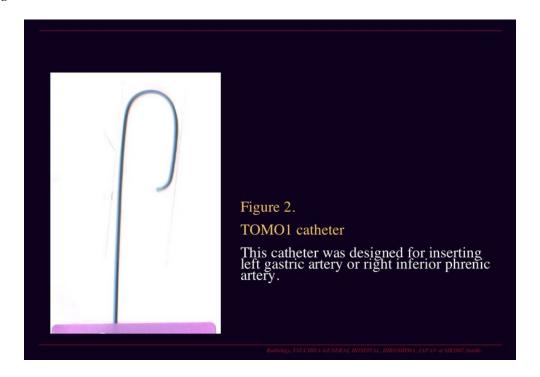
TRA has recognized as a low invasive and safe catheterization method in cardiac angiography and intervention. Advantages of this procedure are low incidence of puncture site trouble and few limitation of patient's movement after the procedure. Patients are free from bed rest just after the examination. Disadvantages of this procedure are technical difficulty using long sized equipments, technical difficulty to puncture small arteries and potential risk of cerebrovascular trouble during the examination. Technical difficulty can be solved to be familiar with this procedure and using appropriate equipments. Cerebrovascular trouble could be a critical event if it happens. We think that cerebrovascular trouble can be prevented with systemic heparinization during the procedure and avoiding frequent catheter exchange during procedure. Though radial artery is rather small artery, incidence of arterial injury is not high. In most of the cases, we can use radial artery several times. We could puncture 10 times in one case. As radial arterial stenosis happened in about 1.4% of cases, pre-procedural assessment is important. Ipsilateral brachial or contralateral radial approach should be chosen at that time.

Conclusion:

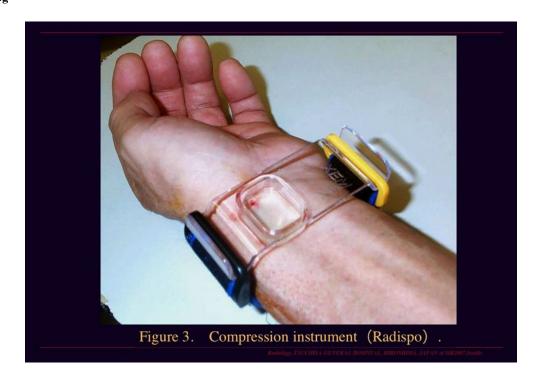
In our experience, abdominal angiography and interventions can be performed safely, effectively and comfortably with TRA and TUA. We believe that these procedures should be an alternative catheterization methods in wide variety of angiographic examinations.

5. References

- 1) Kayashima Y, Sato T, Ito K: Usefulness of transradial angiography and interventional angiography for abdominal diseases: comparison with transfermoral or transbrachial approach. Nippon acta radiologica 61:25-28,2001.
- 2) Campeau L: Percutaneous radial approach for coronary angiography. Cathe cardiovasc diagn 16: 3-7, 1989.
- 3) Otaki M: Percutaneous transradial approach for coronary angiography. Cardiology 81: 330-333, 1992.
- 4) Kiemeneij F and Laarman GJ: Percutaneous transradial artery approach for coronary stent implantation. Catheterization and Cardiovascular diagnosis 30:173-178,1993.


6. Mediafiles:

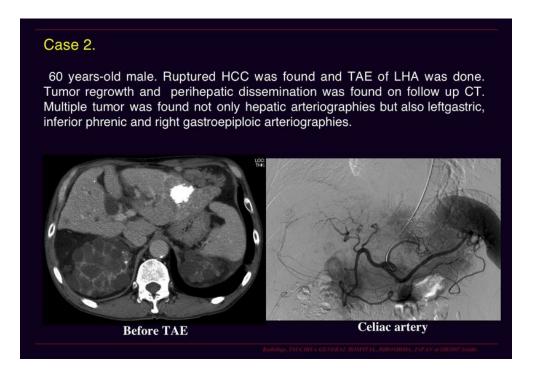
スライド**1.jpg**


Table 1. Change of approach methods in abdominal angiography and intervention in our hospital. 1-8 total (53%) (11%) (15%) (16%) (5%) (11%) (7%) (6%) (14.1%) TFA (47%) (20%) (8%) (28%) (13%) (16%) (39%) (19.9%) (8%) (12%) ТВА 50(3) (75%) 382(12) (65%) 49(2) (69%) 57(2) (77%) 55(1) (76%) 51(3) (64%) (73%) 50(1) (88%) (55%) TRA 2(1) (3%) (3%) 5(2) (0.9%) (1%) TUA Number of examinations, ():Failed radial or ulnar puncture

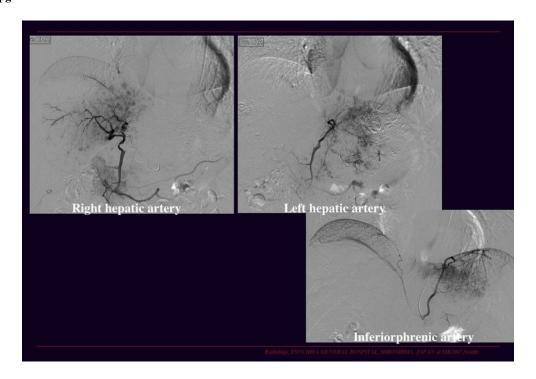
スライド**2.jpg**

スライド**4.jpg**

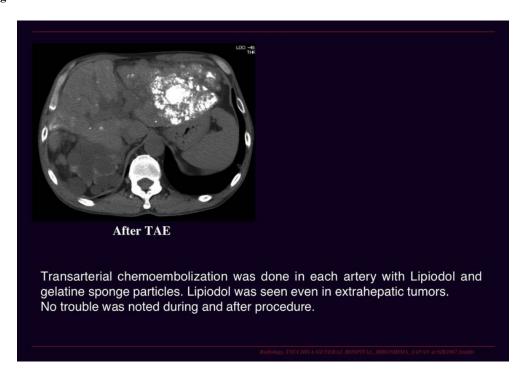
	Table	e 2. Patier	nts characte	eristics.		
	Liver GB Bile duct	Gastro- intestinal tract , omentum	pancreas	kidney	others	total
tumor	148	16	20	11	1	196
thrombosis		2		1		3
aneurysm	2	4	1	1	1	9
bleeding	1	16 +1UC				18
total	151	39	21	13	2	226
					(Numb	er of cases)


スライド**6.jpg**

Radial puncture times	1	2	3	4	5	6	7	8	9	10
Radial puncture cases	150	29	19	10	8	2	5		1	1


Case 1. 58 years-old female patient with abdominal pain. Lt abdominal hematoma was found on CT. Dilated omental artery was found. Feeding artery was branched from splenic artery (red arrows), gastroepiploic artery (blue arrows) and middle colic artery. Feeding artery from splenic artery and gastroepiploic artery was embolized with microcoils transradially. Feeding artery from middle colic artery could not be embolized as microcathter was short. We have to examine another day with TFA and embolization was done successfully.


スライド**8.jpg**



スライド10.jpg

スライド**12.jpg**

